Abstract
The existing semiparametric estimation literature has mainly focused on univariate Tobit models and no semiparametric estimation has been considered for bivariate Tobit models. In this paper, we consider semiparametric estimation of the bivariate Tobit model proposed by Amemiya (1974), under the independence condition without imposing any parametric restriction on the error distribution. Our estimator is shown to be consistent and asymptotically normal, and simulation results show that our estimator performs well in finite samples. It is also worth noting that while Amemiya’s (1974) instrumental variables estimator (IV) requires the normality assumption, our semiparametric estimator actually outperforms his IV estimator even when normality holds. Our approach can be extended to higher dimensional multivariate Tobit models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.