Abstract
Regularly varying space-time processes have proved useful to study extremal dependence in space-time data. We propose a semiparametric estimation procedure based on a closed form expression of the extremogram to estimate parametric models of extremal dependence functions. We establish the asymptotic properties of the resulting parameter estimates and propose subsampling procedures to obtain asymptotically correct confidence intervals. A simulation study shows that the proposed procedure works well for moderate sample sizes and is robust to small departures from the underlying model. Finally, we apply this estimation procedure to fitting a max-stable process to radar rainfall measurements in a region in Florida. Complementary results and some proofs of key results are presented together with the simulation study in the supplement [Buhl et al. (2018)].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.