Abstract

AbstractNonparametric and semiparametric statistical methods assume models whose properties cannot be described by a finite number of parameters. For example, a linear regression model that assumes that the disturbances are independent draws from an unknown distribution is semiparametric—it includes the intercept and slope as regression parameters but has a nonparametric part, the unknown distribution of the disturbances. Nonparametric and semiparametric methods focus on the empirical distribution function, which, assuming that the data are really independent observations from the same distribution, is a consistent estimator of the true cumulative distribution function. In this chapter, with plug-in estimation and the method of moments, functionals or parameters are estimated by treating the empirical distribution function as if it were the true cumulative distribution function. Such estimators are consistent. To understand the variation of point estimates, bootstrapping is used to resample from the empirical distribution function. For hypothesis testing, one can either use a bootstrap-based confidence interval or conduct a permutation test, which can be designed to test null hypotheses of independence or exchangeability. Resampling methods—including bootstrapping and permutation testing—are flexible and easy to implement with a little programming expertise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call