Abstract

We obtain semiparametric efficiency bounds for estimation of a location parameter in a time series model where the innovations are stationary and ergodic conditionally symmetric martingale differences but otherwise possess general dependence and distributions of unknown form. We then describe an iterative estimator that achieves this bound when the conditional density functions of the sample are known. Finally, we develop a “semi-adaptive” estimator that achieves the bound when these densities are unknown by the investigator. This estimator employs nonparametric kernel estimates of the densities. Monte Carlo results are reported.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.