Abstract

. A new semiparametric method for density deconvolution is proposed, based on a model in which only the ratio of the unconvoluted to convoluted densities is specified parametrically. Deconvolution results from reweighting the terms in a standard kernel density estimator, where the weights are defined by the parametric density ratio. We propose that in practice, the density ratio be modelled on the log-scale as a cubic spline with a fixed number of knots. Parameter estimation is based on maximization of a type of semiparametric likelihood. The resulting asymptotic properties for our deconvolution estimator mirror the convergence rates in standard density estimation without measurement error when attention is restricted to our semiparametric class of densities. Furthermore, numerical studies indicate that for practical sample sizes our weighted kernel estimator can provide better results than the classical non-parametric kernel estimator for a range of densities outside the specified semiparametric class.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.