Abstract
We develop a new semiparametric Bayes instrumental variables estimation method. We employ the form of the regression function of the first‐stage equation, and the disturbances are modeled nonparametrically to achieve better predictive power of the endogenous variables, whereas we use parametric formulation in the second‐stage equation, which is of interest in inference. Our simulation studies show that under small sample sizes, the proposed method obtains more efficient estimates and very precise credible intervals compared with existing IV methods with smaller mean squared error. We applied our proposed method to a Mendelian randomization dataset where a large number of instruments are available and semiparametric specification is appropriate. We obtained statistically significant results that cannot be obtained by the existing methods, including standard Bayesian IV.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Stat
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.