Abstract

This article is concerned with the estimation problem in the semiparametric isotonic regression model when the covariates are measured with additive errors and the response is missing at random. An inverse marginal probability weighted imputation approach is developed to estimate the regression parameters and a least-square approach under monotone constraint is employed to estimate the functional component. We show that the proposed estimator of the regression parameter is root-n consistent and asymptotically normal and the isotonic estimator of the functional component, at a fixed point, is cubic root-n consistent. A simulation study is conducted to examine the finite-sample properties of the proposed estimators. A data set is used to demonstrate the proposed approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.