Abstract

Recent results indicate that certain organic molecules whose electronic structures are characterized by extended pi-molecular orbitals can exhibit significant second and third order nonlinear optical (NLO) effects [1]. Unfortunately, this same arrangement which leads to the NLO effects, can also result in essentially one-dimensional bonding coordination. This in turn means that crystals grown from these materials do not readily form good three-dimensional optical-quality crystals, but rather tend to form needles. In addition, pure organic crystals are usually bonded by weak van der Waals forces, often resulting in poor mechanical properties. Indeed, organic impurities are frequently incorporated into these systems during crystallization resulting in poor crystallinity, spurious absorptions, and low damage thresholds. This is particularly true in the case of polymeric NLO materials, where impurities result from the polymerization steps and/or starting materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.