Abstract

Semiochemicals play a central role in communication between plants and insects, such as signaling the location of a suitable host. Fungi on host plants can also play an influential role in communicating certain plant vulnerabilities to an insect. The spiroketal conophthorin is an important semiochemical produced by developing fungal spores. Spiroketals are also used as signals for scolytid communication. Plants and fungi are known to emit varying volatile profiles under biotic and abiotic stress. This paper reports distinctive temporal-volatile profiles from three abiotic treatments, room temperature (control), -15 °C (cold), and -15 °C to room temperature (shock), of cactus tissue plugs. Volatiles from the three treatments included monoterpenes from control plugs, compounds of varying classes and origin at later stages for cold plugs, and known semiochemicals, including spiroketals, at later stages for shock plugs. The results highlight several important findings: a unique tissue source of the spiroketals; abiotic cold-shock stress is indicated as the cause of spiroketal production; and, given previous findings of spirogenesis, fungal spore involvement is a probable biosynthetic origin of the spiroketals. These findings suggest an important role of fungal volatiles as signaling plant vulnerability to insects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.