Abstract

Seminaphthorhodafluor (SNARF) Schiff base (SNARF-SB) bridged periodic mesoporous organosilicas (SSPMOs) with "turn-on" fluorescence enhancement for sensing Cu2+ were synthesized via a template-directed co-condensation method. Small-angle x-ray scattering (SAXS) patterns, high resolution transmission electron microscope (HRTEM) images, and N2 adsorption-desorption isotherms indicated the presence of mesoporous structure in the SSPMOs. FT-IR spectra and 29Si MAS NMR data confirmed the successful incorporation of bridged organic groups in the framework of SSPMOs. The luminous properties that SSPMOs had a selective response to Cu2+ were investigated by UV-Vis absorption spectroscopy and fluorescence spectroscopy. The limit of detection (LOD) was 5.1 × 10-7M and binding stoichiometry was determined 1:1 between SNARF-SB and Cu2+. The fluorescence enhancement of SSPMOs towards Cu2+ was induced by ring-opening of the spirolactam in SNARF-SB in framework of SSPMOs, which was confirmed by FT-IR spectra of SNARF-SB with Cu2+. Moreover, SSPMOs have improved fluorescence lifetimes compared with that of SNARF-SB. Therefore, SSPMOs can be a progressive chemical sensor for Cu2+ due to its high selectivity, recyclability, and stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.