Abstract
Three-dimensional (3D) Dirac semimetals are new quantum materials and can be viewed as 3D analogues of graphene. Many fascinating electronic properties have been proposed and realized in 3D Dirac semimetals, which demonstrate their potential applications in next generation quantum devices. Bismuth-antimony Bi1−xSbx can be tuned from a topological insulator to a band insulator through a quantum critical point at x ≈ 4%, where 3D Dirac fermions appear. Here, we report on a magnetotransport study of Bi1−xSbx at such a quantum critical point. An unusual magnetic-field induced semimetal-semiconductor phase transition was observed in the Bi0.96Sb0.04 single crystals. In a magnetic field of 8 T, Bi0.96Sb0.04 single crystals show giant magnetoresistances of up to 6000% at low-temperature, 5 K, and 300% at room-temperature, 300 K. The observed magnetoresistances keep linear down to approximate zero-field when the temperature is below 200 K. Our experimental results are not only interesting for the fundamental physics of 3D Dirac semimetals but also for potential applications of 3D Dirac semimetals in magnetoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.