Abstract

Considered are semi-Markov decision processes (SMDPs) with finite state and action spaces. We study two criteria: the expected average reward per unit time subject to a sample path constraint on the average cost per unit time and the expected time-average variability. Under a certain condition, for communicating SMDPs, we construct (randomized) stationary policies that are ε-optimal for each criterion; the policy is optimal for the first criterion under the unichain assumption and the policy is optimal and pure for a specific variability function in the second criterion. For general multichain SMDPs, by using a state space decomposition approach, similar results are obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.