Abstract
A semi-localization of a category is a full reflective subcategory with the property that the reflector is semi-left-exact. There are many interesting examples of semi-localizations, as for instance any torsion-free subcategory of a semi-abelian category. By specializing a result due to S. Mantovani, we first characterize the categories which are semi-localizations of exact Mal'tsev categories. We then prove a new characterization of protomodular categories in terms of binary relations, allowing us to obtain an abstract characterization of the semi-localizations of exact protomodular categories. This result is very useful to study the (hereditarily)-torsion-free subcategories of semi-abelian categories. Some examples are considered in detail in the categories of groups, crossed modules, commutative rings and topological groups. We finally explain how these results extend the corresponding ones obtained in the abelian context by W. Rump.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.