Abstract
We study a new type of motion planning problem in dimension 2 and 3 via linear and quadratic quantifier elimination. The object to be moved and the free space are both semilinear sets with no convexity assumptions. The admissible motions are finite continuous sequences of translations along prescribed directions. When the number of translations is bounded in advance, then the corresponding path finding problem can be modelled and solved as a linear quantifier elimination problem. Moreover the problem to find a shortest or almost shortest admissible path can be modelled as a special quadratic quantifier elimination problem. We give upper complexity bounds on these problems, report experimental results using the elimination facilities of the REDLOG package of REDUCE, and indicate a possible application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applicable Algebra in Engineering, Communication and Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.