Abstract
In this paper, we use the techniques of fractional calculus to study the existence of a unique solution to semilinear fractional differential equation driven by a [Formula: see text]-Hölder continuous function [Formula: see text] with [Formula: see text]. Here, the initial condition is a function that may not be defined at zero and the involved integral with respect to [Formula: see text] is the extension of the Young integral [An inequality of the Hölder type, connected with Stieltjes integration, Acta Math. 67 (1936) 251–282] given by Zähle [Integration with respect to fractal functions and stochastic calculus I, Probab. Theory Related Fields 111 (1998) 333–374].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.