Abstract
In this paper, we solve the Cauchy problem for a hyperbolic system of first-order PDEs defined on a certain Banach space X. The system has a special semilinear structure because, on the one hand, the evolution law can be expressed as the sum of a linear unbounded operator and a nonlinear Lipschitz function but, on the other hand, the nonlinear perturbation takes values not in X but on a larger space Y which is related to X. In order to deal with this situation we use the theory of dual semigroups. Stability results around steady states are also given when the nonlinear perturbation is Fréchet differentiable. These results are based on two propositions: one relating the local dynamics of the nonlinear semiflow with the linearised semigroup around the equilibrium, and a second relating the dynamical properties of the linearised semigroup with the spectral values of its generator. The later is proven by showing that the Spectral Mapping Theorem always applies to the semigroups one obtains when the semiflow is linearised. Some epidemiological applications involving gut bacteria are commented
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.