Abstract

The purpose of this research is to study the Saint-Venant's problem for right cylinders with general cross-section made of inhomogeneous anisotropic elastic materials with voids. We reformulate the quasi-static equilibrium equations with the axial variable playing the role of a parameter. Two classes of semi-inverse solutions to Saint-Venant's problem are described in terms of five generalized plane strain problems. These classes are used in order to obtain a semi-inverse solution for the relaxed Saint-Venant's problem. An application of this results in the study of extension, bending, torsion and flexure of right circular cylinders in the case of isotropic materials is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.