Abstract

We study Riemannian and semi-invariant submersions whose total manifolds are locally product Riemannian. The necessary and sufficient conditions for the integrability and totally geodesicness of all distributions which are introduced in the definition of the semi-invariant submersion are obtained. We also give a characterization theorem for the proper semi-invariant submersions with totally umbilical fibers and find some results for such submersions with parallel canonical structures. Moreover, we define first variational formula on the fibers of a semi-invariant submersion and by the virtue of that we prove a new theorem which has a condition for the harmonicity of a semi-invariant submersion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.