Abstract
Semi-infinite forms on the moduli spaces of genus-zero Riemann surfaces with punctures and local coordinates are introduced. A partial operad of semi-infinite forms is constructed. Using semi-infinite forms and motivated by a partial suboperad of the partial operad of semi-infinite forms, topological vertex partial operads of type k<0 and strong topological vertex partial operads of type k<0 are constructed. It is proved that the category of (locally-)grading-restricted (strong) topological vertex operator algebras of type k<0 and the category of (weakly) meromorphic ℤ×ℤ-graded algebras over the (strong) topological vertex partial operad of type k are isomorphic. As an application of this isomorphism theorem, the following conjecture of Lian-Zuckerman and Kimura-Voronov-Zuckerman is proved: A strong topological vertex operator algebra gives a (weak) homotopy Gerstenhaber algebra. These results hold in particular for the tensor product of the moonshine module vertex operator algebra, the vertex algebra constructed from a rank 2 Lorentz lattice and the ghost vertex operator algebra, studied in detail first by Lian and Zuckerman.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.