Abstract

Stannite Cu2FeSnS4 and kesterite Cu2ZnSnS4 were synthesized by an eco-friendly ball-milling method in an industrial mill. Both synthesized sulfides represent perspective materials in solar cell technology. Several characterization methods have been applied to determine the course of solid state mechanochemical reactions leading to the synthesis of potential chalcogenide solar cell absorbers. The phase and surface composition, solid state kinetics, and surface morphology of these quaternary sulfides were elucidated by the methods of X-ray diffractometry, X-ray photoelectron spectroscopy, Soxhlet analysis, and scanning electron microscopy. The application of eccentric vibration mills for these syntheses constitutes the big challenge for researchers in the field of photovoltaics in their permanent effort in scaling up new materials and processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.