Abstract

A semi-implicit numerical model for the three-dimensional Navier-Stokes equations on unstructured grids is derived and discussed. The governing differential equations are discretized by means of a finite difference-finite volume algorithm which is robust, very efficient, and applies to barotropic and baroclinic, hydrostatic and nonhydrostatic, and one-, two-, and three-dimensional flow problems. The resulting model is relatively simple, mass conservative, and unconditionally stable with respect to the gravity wave speed, wind stress, vertical viscosity, and bottom friction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.