Abstract
We consider the discrete-time Arrow-Hurwicz-Uzawa primal-dual algorithm, also known as the first-order Lagrangian method, for constrained optimization problems involving a smooth strongly convex cost and smooth convex constraints. We prove that, for every given compact set of initial conditions, there always exists a sufficiently small stepsize guaranteeing exponential stability of the optimal primal-dual solution of the problem with a domain of attraction including the initialization set. Inspired by the analysis of nonlinear oscillators, the stability proof is based on a non-quadratic Lyapunov function including a nonlinear cross term.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.