Abstract

Time series in many areas of application often display local or global trends. Statistical “explanations” of such trends are, for example, polynomial regression, smooth bounded trends that are estimated nonparametrically, and difference-stationary processes such as, for instance, integrated ARIMA processes. In addition, there is a fast growing literature on stationary processes with long memory which generate spurious local trends. Visual distinction between deterministic, stochastic and spurious trends can be very difficult. For some time series, several “trend generating” mechanisms may occur simultaneously. Here, a class of semiparametric fractional autoregressive models ( SEMIFAR) is proposed that includes deterministic trends, difference stationarity and stationarity with short- and long-range dependence. The components of the model can be estimated by combining maximum likelihood estimation with kernel smoothing in an iterative plug-in algorithm. The method helps the data analyst to decide whether the observed process contains a stationary short- or long-memory component, a difference stationary component, and/or a deterministic trend component. Data examples from climatology, economics and dendrochronology illustrate the method. Finite sample behaviour is studied in a small simulation study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.