Abstract

Solubility, diffusivity and permeability of toluene vapors in low-density polyethylene (LDPE) membranes of various thicknesses (approximately 48, 93, 138 and 187 μm) at different temperatures 30, 40 and 50 °C in the range of relative vapor pressure p/ p 0=(0.05; 0.95) were measured using new type of permeation apparatus. Moreover, special construction of the new cell enables determination of the permeant amount sorbed in the membrane in the steady state operation of vapor permeation. The simple semi-empirical model of toluene transport in a polyethylene membrane based on relation between experimentally obtained effective diffusion coefficients and concentration dependent diffusion coefficients evaluated from experiments on a new permeation apparatus was proposed. The model enables estimation of toluene fluxes, sorption in the steady state of vapor permeation and concentration profiles in a polyethylene membrane from equilibrium sorption isotherms and effective diffusion coefficients. Very good agreement between experimental and calculated values from the proposed model was obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call