Abstract

The energy-accommodation coefficient is an important parameter affecting satellite drag and orbit predictions. Previous estimates of this coefficient have been based on interpolation from values tabulated at several altitudes and solar conditions. In an effort to improve drag coefficient accuracy and to compute values of the accommodation coefficient that respond to the real variability of the atmosphere, a first-principles approach is desired. The present work combines the theory that gas–surface interactions in lowEarth orbit are driven byadsorption of atomic oxygen, with observations of satellite accommodation collected during solar cycle 22. The result is a semiempirical model based on Langmuir’s adsorption isotherm, which agrees with the data to within 3%. This model can be used to improve drag predictions during a wide range of space weather conditions, as well as to improve the accuracy for atmospheric densities derived from satellite drag.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call