Abstract

The Bethe surface of a material is an essential element in the study of inelastic scattering at low impact energies where the optical approximation fails. In this work we examine various semi-empirical models for the dielectric response function of condensed water towards an improved description of the energy-loss function over the whole energy–momentum plane (i.e. Bethe surface). The experimental “optical” data (i.e. at zero momentum transfer) for the valence bands of liquid and solid water are analytically represented by a sum-rule constrained linear combination of Drude-type functions. The dependence on momentum transfer is introduced through various widespread “extension” schemes which are compared against the available Compton scattering data. It is shown that the widely used Lindhard function along with its “single-pole” (or “δ-oscillator”) approximation used in the Penn and Ashley models, as well as the Ritchie and Howie extended-Drude scheme with a simple quadratic dispersion, predict a sharp Bethe ridge which compares poorly with the experimental profile. In contrast, the Mermin dielectric function provides a more realistic account of the observed broadening with momentum transfer. An improved fully-extended-Drude model is presented which incorporates the momentum broadening and line-shift of the Bethe ridge and distinguishes between the different dispersion of the discrete and continuum spectra of water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.