Abstract

GASDECOM is typically used in the design of gas pipelines for calculating decompression speed in connection with the Battelle two-curve method used throughout the pipeline industry for the control of propagating ductile fracture. GASDECOM idealizes the decompression process as isentropic and one-dimensional, taking no account of pipe wall frictional effects. Previous shock tube tests showed that decompression wave speeds in smaller diameter and rough pipes are consistently slower than those predicted by GASDECOM for the same conditions of mixture composition and initial pressure and temperature. Preliminary analysis based on perturbation theory and the fundamental momentum equation showed a correction term to be subtracted from the ‘ideal’ value of the decompression speed. One parameter in this correction term involves a dynamic spatial pressure gradient of the outflow at the rupture location. While this is difficult to obtain without a shock tube or actual rupture test, data from 14 shock tube tests, as well as from 14 full scale burst tests involving a variety of gas mixture compositions, were analyzed to quantify the variation of this pressure gradient with gas conditions and outflow Mach number. A semi-empirical relationship was found to correlate this pressure gradient parameter with two basic parameters representing the natural gas mixture, namely the molecular weight of the mixture and its higher heating value (HHV). For lean gas mixes, the semi-empirically obtained correlation was found to fit very well the experimentally determined decompression wave speed curve. For rich gas mixes, the correlation fits both branches of the curve; above and below the plateau pressure. This paper provides the basis for the derived semi-empirical correlation, and suggests a procedure (with examples) to correct the ‘ideal’ (frictionless) GASDECOM prediction to account for both the effects of pipe diameter and pipe internal wall surface roughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.