Abstract
This paper investigates an alternative approximation to the maximal viability set for linear systems with constrained states and input. Current ellipsoidal and polyhedral approximations are either too conservative or too complex for many applications. As the primary contribution, it is shown that the intersection of a controlled invariant ellipsoid and state constraints (referred to as a semi-ellipsoidal set) is itself controlled invariant under certain conditions. The proposed semi-ellipsoidal approach is less conservative than the ellipsoidal method but simpler than the polyhedral method. A second-order system examples serve as proof-of-concept of the approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.