Abstract

With the exponential growth in Android apps, Android based devices are becoming victims of target attackers in the “silent battle” of cybernetics. To protect Android based devices from malware has become more complex and crucial for academicians and researchers. The main vulnerability lies in the underlying permission model of Android apps. Android apps demand permission or permission sets at the time of their installation. In this study, we consider permission and API calls as features that help in developing a model for malware detection. To select appropriate features or feature sets from thirty different categories of Android apps, we implemented ten distinct feature selection approaches. With the help of selected feature sets we developed distinct models by using five different unsupervised machine learning algorithms. We conduct an experiment on 5,00,000 distinct Android apps which belongs to thirty distinct categories. Empirical results reveals that the model build by considering rough set analysis as a feature selection approach, and farthest first as a machine learning algorithm achieved the highest detection rate of 98.8% to detect malware from real-world apps.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call