Abstract

We generalize the notions of semidistributive elements and of prime ideals from lattices to arbitrary posets. Then we show that the Boolean prime ideal theorem is equivalent to the statement that if a posetP has a join-semidistributive top element then each proper ideal ofP is contained in a prime ideal, while the converse implication holds without any choice principle. Furthermore, the prime ideal theorem is shown to be equivalent to the following order-theoretical generalization of Alexander’s subbase lemma: If the top element of a posetP is join-semidistributive and compact in some subbase ofP then it is compact inP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.