Abstract

${L^2}$ norm error estimates are proved for finite element approximations to the solutions of initial boundary value problems for second order hyperbolic partial differential equations with time-dependent coefficients. Optimal order rates of convergence are shown for semidiscrete and single step fully discrete schemes using specially constructed initial data. The initial data are designed so that the data used for the fully discrete equation is reasonable to compute and so that the optimal order estimates can be proved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.