Abstract
This paper explores new connections between the satisfiability problem and semidefinite programming. We show how the process of resolution in satisfiability is equivalent to a linear transformation between the feasible sets of the relevant semidefinite programming problems. We call this transformation semidefinite programming resolution, and we demonstrate the potential of this novel concept by using it to obtain a direct proof of the exactness of the semidefinite formulation of satisfiability without applying Lasserre’s general theory for semidefinite relaxations of 0/1 problems. In particular, our proof explicitly shows how the exactness of the semidefinite formulation for any satisfiability formula can be interpreted as the implicit application of a finite sequence of resolution steps to verify whether the empty clause can be derived from the given formula.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.