Abstract
In this paper, “chance optimization” problems are introduced, where one aims at maximizing the probability of a set defined by polynomial inequalities. These problems are, in general, nonconvex and computationally hard. With the objective of developing systematic numerical procedures to solve such problems, a sequence of convex relaxations based on the theory of measures and moments is provided, whose sequence of optimal values is shown to converge to the optimal value of the original problem. Indeed, we provide a sequence of semidefinite programs of increasing dimension which can arbitrarily approximate the solution of the original problem. To be able to efficiently solve the resulting large-scale semidefinite relaxations, a first-order augmented Lagrangian algorithm is implemented. Numerical examples are presented to illustrate the computational performance of the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.