Abstract
In this paper, we propose a two-parameter preconditioned variant of the deteriorated PSS iteration method (J. Comput. Appl. Math., 273, 41–60 (2015)) for solving singular saddle point problems. Semi-convergence analysis shows that the new iteration method is convergent unconditionally. The new iteration method can also be regarded as a preconditioner to accelerate the convergence of Krylov subspace methods. Eigenvalue distribution of the corresponding preconditioned matrix is presented, which is instructive for the Krylov subspace acceleration. Note that, when the leading block of the saddle point matrix is symmetric, the new iteration method will reduce to the preconditioned accelerated HSS iteration method (Numer. Algor., 63 (3), 521–535 2013), the semi-convergence conditions of which can be simplified by the results in this paper. To further improve the effectiveness of the new iteration method, a relaxed variant is given, which has much better convergence and spectral properties. Numerical experiments are presented to investigate the performance of the new iteration methods for solving singular saddle point problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.