Abstract

Semicontinuous wire strand modeling is an approach by which each layer of a strand is mathematically represented by an orthotropic cylinder whose mechanical properties are chosen to match the behavior of its corresponding layer of wires. Such a semicontinuous model is herein proposed for the analysis of multilayered wire strands under bending, tensile, and torsion loads. It is based on continuum mechanics and elasticity of orthotropic materials. The model permits the evaluation of strand stiffness, contact stress, interlayer shear stress, and interlayer slip. Results are obtained and given for a seven-wire strand and for selected steel reinforced aluminum conductors (ACSRs). Comparisons are made with results from two existing models that use a more classical approach, from another model that uses a semicontinuous approach, and from published experimental works. Under tensile and torsion loads, it is shown that the present semicontinuous model gives very accurate results. Under bending load, validation is more difficult to establish, but this new model is very promising.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.