Abstract

This work analyzes, from the effects related to the processes of transportation of carrier and the changes in the electronic structure of semiconductors materials due to the presence of defects and disorders in the crystalline net. These defects are located in specific areas of the material and either interact or remain inert. In general, they are described by local wave functions. The study of superlattices of semiconductor crystal considers important parameters such as disorder effects in crystals and the alternate periodic growth of the layer of two semiconductors with different gaps and minigaps energies. The quantum mechanical calculations are applied for determining the physical properties of the semiconductors crystals. This study encompasses the effects of defects and the crystalline disorders evaluation by quantum mechanics. Further, it is discuss the presence of defects in the periodic, quasiperiodic and disordered arrangements. The theoretical approach use to understand the mechanism and the results of experimental techniques in which are characterized the current and optic transportation of a semiconductor crystal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.