Abstract

Photocatalysis has been vastly applied for the removal of contaminants of emerging concern (CECs) and other micropollutants, with the aim of future water reclamation. As a process based upon photon irradiation, materials that may be activated through natural light sources are highly pursued, to facilitate their application and reduce costs. TiO2 is a reference material, and it has been greatly optimized. However, in its typical configuration, it is known to be mainly active under ultraviolet radiation. Thus, multiple alternative visible light driven (VLD) materials have been intensively studied recently. WO3 and g-C3N4 are currently attractive VLD catalysts, with WO3 possessing similarities with TiO2 as a metal oxide, allowing correlations between the knowledge regarding the reference catalyst, and g-C3N4 having an interesting and distinct non-metallic polymeric structure with the benefit of easy production. In this review, recent developments towards CECs degradation in TiO2 based photocatalysis are discussed, as reference catalyst, alongside the selected alternative materials, WO3 and g-C3N4. The aim here is to evaluate the different techniques more commonly explored to enhance catalyst photo-activity, specifically doping with multiple elements and the formation of composite materials. Moreover, the possible combination of photocatalysis and ozonation is also explored, as a promising route to potentialize their individual efficiencies and overcome typical drawbacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.