Abstract

The effects of the semiconductor layer thickness and the back-gate voltage on the current-voltage (I-V) characteristics of the MOS/SOI tunnel diode with an aluminum gate and n-type semiconductor layers are theoretically investigated. If the semiconductor thickness is reduced or the back-gate voltage is more negative, the total thermal generation current decreases and the gate-oxide thickness critical for transition from the quasiequilibrium strong inversion state to the nonequilibrium state increases. If the MOS/SOI tunnel diode is in the transition range between the nonequilibrium and quasiequilibrium states, a positive increase of the back-gate voltage V/sub BG/ results in a strong increase of the majority carrier tunnel current. This back-gate effect may be exploited in more functional devices based on the MOS/SOI tunnel diode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.