Abstract

In the theory as presented in this paper and the following one, we shall attempt to apply the semiconductor principles and methods to the study of ion transport in thin lipid membranes. Detailed formulations are given on the potential energy barriers at the interfaces, voltage drops in the polar and non-polar regions, and potential and field distributions in the diffuse double layer and within a charged membrane. These results will be used mainly as the boundary conditions for the solution of ion flow as to be given in the following paper. The analysis clearly indicates that the ion transport is interface-limited and is profoundly influenced by the presence of surface charges. An explanation of Na+ extrusion in nerve membrane is given based on the field distribution analysis. The theory also suggests that the “membrane potential” depends mainly on surface charges but not necessarily on ion permeation through the membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call