Abstract

A simple conventional emulsion polymerization approach is developed to synthesize hybrid colloidal particles consisting of semiconductor nanocrystals and organic polymers. A uniform distribution of CdSe nanocrystals in composite hybrid particles of ∼20 nm diameter with relatively narrow size distribution is obtained. Transmission electron microscopy, dynamic light scattering and spectroscopic measurements are carried out to elucidate possible mechanisms of hybrid colloidal nanoparticle formation. The effect of crosslinking on the robustness of hybrid colloidal nanoparticles is examined. The versatility of our emulsion polymerization approach is demonstrated by synthesizing hybrid colloids with different monomers. To address photoluminescence loss, a ZnS coating on CdSe nanocrystals is employed to preserve the photoluminescence while maintaining the same average size, size distribution, and composition of the final hybrid nanoparticles. These semiconductor–polymer hybrid colloidal nanoparticles with relatively narrow size distribution may be useful in incorporating semiconductor nanocrystals into conventional lithographic techniques for developing novel nanoscale patterning schemes as well as in extending currently available self-assembly methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.