Abstract

Semiconductor nanoparticles in the quantum confinement regime used as biolabels present many advantages over the other chemical species used as fluorophores. They are composed of 2000–6000 atoms rendering a far greater photostability and allowing for long time bioimaging experiments. In this work we present a synthetic route for the obtention of large quantities of highly fluorescent CdSe and CdTe/CdS core–shell nanocrystals based on aqueous colloidal chemistry. The methodologies were optimized and the systems were characterized by optical spectroscopy, transmission electronic microscopy and X-Ray diffractometry. The fluorescent biolabels were tested in live macrophages.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.