Abstract
Recently, photovoltaic devices based on colloidal semiconductor nanocrystals (NCs) have attracted a great interest due to their flexible synthesis with tunable band gaps and shape-dependent optical and electronic properties. However, the surface of NCs typically presents long chain with electrically insulating organic ligands, which hinder the device applications for NCs. So the major challenge of NCs for photovoltaic devices application is to decrease the inter NC space and the height of the tunnel barriers among NCs, therefore increase the transport properties of NCs. In this article, recent development of colloidal semiconductor NCs and possible routes for improving transport properties of colloidal NCs were reviewed. Among those methods, the thermal annealing approach provides a simple and cost-effective way to fabricate superlattice and to decrease the inter-space among NCs, which may be used for the preparation of other nanocrystalline superstructure and functional devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.