Abstract

Sharks can sense bioelectric fields of prey and other animals in seawater using an extraordinary system of sense organs (ampullae of Lorenzini) [R.D. Fields, The shark's electric sense. Sci. Am. 297 (2007) 74-81]. A recent study reported that these sense organs also enable sharks to locate prey-rich thermal fronts using a novel mode of temperature reception without ion channels. The study reported that gel extracted from the organs operates as a thermoelectric semiconductor, generating electricity when it is heated or cooled [B.R. Brown, Neurophysiology: sensing temperature without ion channels, Nature 421 (2003) 495]. Here we report biophysical studies that call into question this mechanism of sensory transduction. Our experiments indicate that the material exhibits no unusual thermoelectric or electromechanical properties, and that the thermoelectric response is an artifact caused by temperature effects on the measurement electrodes. No response is seen when non-metallic electrodes (carbon or salt bridges) are used, and ordinary seawater produces the same effect as shark organ gel when silver wire electrodes are used. These data are consistent with the voltages arising from electrochemical electrode potentials rather generated intrinsically within the sample. This new evidence, together with the anatomy of the organs and behavioral studies in the literature, best support the conclusion that the biological function of these sense organs is to detect electric fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.