Abstract
High-temperature operation of solid oxide fuel cells causes several degradation and material issues. Lowering the operating temperature results in reduced fuel cell performance primarily due to the limited ionic conductivity of the electrolyte. Here we introduce the Fe-doped SrTiO3-δ (SFT) pure perovskite material as an electrolyte, which shows good ionic conduction even at lower temperatures, but has low electronic conduction avoiding short-circuiting. Fuel cell fabricated using this electrolyte exhibits a maximum power density of 540 mW/cm2 at 520 °C with Ni-NCAL electrodes. It was found that the Fe-doping into the SrTiO3-δ facilitates the creation of oxygen vacancies enhancing ionic conductivity and transport of oxygen ions. Such high performance can be attributed to band-bending at the interface of electrolyte/electrode, which suppresses electron flow, but enhances ionic flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.