Abstract

In this paper, a new type of semiconductor laser based on Fano interference is described. One of the laser mirrors relies on the interference between the continuum of waveguide modes and a side-coupled nanocavity, leading to a narrow-band mirror that provides the Fano laser with unique characteristics. In addition to being truly single-mode, the laser can be modulated through the mirror at frequencies far exceeding the relaxation oscillation resonance. Furthermore, nonlinearities in the nanocavity can be used to implement a saturable mirror, leading to passive pulse generation with repetition frequencies in the gigahertz range. This paper reviews the theory of Fano lasers and the current experimental status. Experimentally, the Fano laser concept is demonstrated using a photonic crystal platform with quantum dot active material. Both continuous wave operation and self-pulsing is observed for optically pumped lasers operating at room temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.