Abstract

Semiconductor diamond is considered the best heater material to generate ultra-high temperatures in a Kawai cell. In two pioneering studies, a mixture of graphite and amorphous boron (or boron carbide, B4C) was converted to semiconductor diamond in the diamond stability field and was confirmed to generate 2000°C and 3500°C, respectively. Following these works, we synthesized a homemade boron-doped graphite block with fine machinability. With this technical breakthrough, we developed a semiconductor diamond heater in a smaller Kawai-type cell assembly. Here, we report the procedure for making machinable boron-doped graphite, and the performance of the material as a heater in a Kawai cell at 15 GPa using tungsten carbide anvils and at ∼50 GPa using sintered diamond anvils. Furthermore, we present a finite element simulation of the temperature distribution generated by a semiconductor diamond heater, which is much more homogeneous than that generated by a metal heater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.