Abstract

A strategy to covalently connect crystalline covalent organic frameworks (COFs) with semiconductors to create stable organic-inorganic Z-scheme heterojunctions for artificial photosynthesis is presented. A series of COF-semiconductor Z-scheme photocatalysts combining water-oxidation semiconductors (TiO2 , Bi2 WO6 , and α-Fe2 O3 ) with CO2 reduction COFs (COF-316/318) was synthesized and exhibited high photocatalytic CO2 -to-CO conversion efficiencies (up to 69.67 μmol g-1 h-1 ), with H2 O as the electron donor in the gas-solid CO2 reduction, without additional photosensitizers and sacrificial agents. This is the first report of covalently bonded COF/inorganic-semiconductor systems utilizing the Z-scheme applied for artificial photosynthesis. Experiments and calculations confirmed efficient semiconductor-to-COF electron transfer by covalent coupling, resulting in electron accumulation in the cyano/pyridine moieties of the COF for CO2 reduction and holes in the semiconductor for H2 O oxidation, thus mimicking natural photosynthesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call