Abstract

Semiconductor core, glass cladding fibres that can be produced with scalable dimensions and unique waveguide designs are offering new opportunities for nonlinear photonics. This paper reviews developments in the fabrication and post-processing of such semiconductor core fibres and their enabling of low loss and high efficiency nonlinear components across wavelengths spanning the near- to mid-infrared. Through adaption and expansion of the production processes, routes to new core materials are being opened that could extend the application space, whilst all-fibre integration methods will result in more robust and practical semiconductor systems. Through continued improvement in the core materials, fibre designs and transmission losses, semiconductor fibres are poised to bring unique functionality to both the fibre and semiconductor research fields and their practical application into a myriad of optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.