Abstract
We consider theoretically a semiconductor nanostructure embedded in one-dimensional microcavity and study the modification of its electron energy spectrum by the vacuum fluctuations of the electromagnetic field. To solve the problem, a non-perturbative diagrammatic approach based on the Green's function formalism is developed. It is shown that the interaction of the system with the vacuum fluctuations of the optical cavity opens gaps within the valence band of the semiconductor. The approach is verified for the case of large photon occupation numbers, proving the validity of the model by comparing to previous studies of the semiconductor system excited by a classical electromagnetic field. The developed theory is of general character and allows for unification of quantum and classical descriptions of the strong light-matter interaction in semiconductor structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.