Abstract

Principles of crystal engineering have been applied toward the construction of supramolecular assemblies between an acid-functionalized tetraphenylethylene derivative and three different bis(pyridine)s [4,4'-bis(pyridyl)ethylene, 4,4'-bis(pyridyl)ethane, and 4,4'-bipyridine]. Each assembly was structurally characterized, and charge transfer interactions within each sample were visually apparent. Quantum chemical calculations were used to determine crystal band structure and band gap magnitude, and electrical properties of the materials were measured using conducting probe atomic force microscopy (CP-AFM). The crystals displayed charge-carrier capability, and the magnitude of semiconductivity varied systematically as a function of conjugation in the bis(pyridine) component. Crystals incorporating 4,4'-bis(pyridyl)ethylene and 4,4'-bipyridine displayed conductivities comparable to those of established organic semiconductors (μ(eff) = 0.38 and 1.7 × 10(-2) cm(2)/V·s, respectively).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.